The Three elements of The Future Parallel World: Computing Power, Electricity and Heat

In 1900, Planck introduced the concept of energeticons to overcome the difficulties of classical theory in explaining the laws of blackbody radiation, which laid the cornerstone for quantum theory. Then, Einstein proposed the light quantum hypothesis in response to the contradiction between the photoelectric effect experiments and the classical theory, and successfully used the energetic subconcept in the problem of specific heat of solids, which opened the way for the development of quantum theory.

We previously proposed a macroscopic perspective i.e. understanding computing from the perspective of entropy: computing can be thought of as the entropy-reducing act of using electrical energy and raw data as raw materials to make disordered data orderly and valuable, with a one-to-one correspondence between computing demand and energy consumption.

So what does the act of computing look like in the microcosm? We divide computing into three main processes, namely, electrical energy transfer, chip computing, and heat dissipation. Based on quantum theory, we extend a new perspective.

First, the electrical energy is transferred to the chip through the wire, and this process is done by electrons. Based on quantum theory, it can actually be understood that the electrons surrounding the metal atoms are driven by energy to leap from one end of the wire to the other in turn to indirectly realize the rapid transfer of energy.

Then, the chip uses electrical energy to complete the computing task, the process of the chip’s software algorithm and hardware structure can be understood as the consumption of energy to encode, according to the encoding way to consume the electrical energy to produce a pre-desired result.

Finally, the chip will produce heat after completing the computing, the macrocosm performance is through the chip 100% of the electrical energy into more than 99.9% of the heat and a small part of the electromagnetic wave, while in the microcosm is to drive the electron constantly jumping change in the energy due to changes in the nature of the metal atoms around the electron can not continue to jump and heat in the form of energy to the surrounding environment (air) to transfer.

Based on quantum theory and relativity, we can extend many early physical concepts: the conservation of mass is the conservation of energy, various particles (atoms, electrons, photons) are different manifestations of energy, and all changes in energy tend to turn into heat and tend to stabilize.

Back to the macro world, we know that the development of society is essentially driven by energy (steam – electricity), the progress of science and technology is essentially to discover more energy and improve the efficiency of energy utilization, computing and computing power as a more efficient way to use energy will certainly play an increasingly important role in the future development of society. In the era of industrial revolution along with the discovery and utilization of oil, the largest giant ever born in the business world – Standard Oil Truss, we believe that in the future will certainly produce a similar giant to provide energy services for computing.

The current demand for energy is mainly in electricity, oil and heat, which are the basic elements to support the normal operation of society and normal human life, but what many people have not yet noticed is that our demand for computing power is now ubiquitous, and all services such as cell phones, networks and software are based on computing power, and the demand for computing power is growing exponentially, which is exactly why our country has proposed This is where the “new infrastructure” is important.

In addition to finding more energy supply (e.g. clean energy), energy as a finite and scarce resource, we have been trying to do everything possible to improve the efficiency of its use, so we see the emergence of new technologies in various fields, as well as in the field of computing: chips are also evolving to reduce the power consumption ratio. With technology and cost bottlenecks, in addition to improving efficiency, energy reuse is increasingly being emphasized. So we have seen the use of waste heat from high grade heat in industry, is there such an opportunity in computing? The answer is yes! Because people’s demand for computing power at the same time, behind the large demand for electricity and produce the corresponding amount of heat, these heat used to need to consume more electricity to dissipate heat, now we can collect them its to meet the heat demand, so that both the secondary use of energy and reduce the cost of demand from all sides.

From the perspective of quantum theory, people’s heat demand based on electricity is essentially the process of converting the electrical energy of electrons into heat energy, and chip computing is likely to be the optimal process to achieve this path because it can accomplish both the computing task and solve the heat dissipation demand of chips and people’s heating demand.

According to our previous theory of Energy Profit Efficiency (EPE) EPE = (revenue – energy cost) / time, society will evolve toward increasing energy profit efficiency. For example, the Internet and mobile Internet have been a large amount of information transmitted through the network, which not only saves the cost of information transmission and shortens the transmission time, but also the huge computing power can quickly process the massive amount of data to get more valuable information, which has undoubtedly greatly improved the efficiency of energy profit.

If we want to further improve the efficiency of energy profits, how should society evolve? In contrast, the pain points of our real life are mainly manifested in two aspects: 1. time and space is still the biggest limitation of human activities; 2. the growth rate of computing power is still unable to meet the exponential growth of computing needs.

From horse-drawn carriages to high-speed trains and airplanes to spaceships, the space and displacement speed of human activities have increased greatly, and the time required to move has been gradually shortened with the progress of technology, but airplanes are still late, and it still takes half a day to travel from Beijing to New York; the Internet links and stores a huge amount of information around the world, and powerful search engines can let you know almost everything that happens around the world at any time and anywhere, but AlphaGo can beat human Go masters, but it still can’t calculate the mystery of the entire 3 billion base pairs of genetic sequence and the countless stars in the universe. Technology, especially medical advances, has greatly extended the average life expectancy of contemporary humans, but everyone still faces aging and death, and once dead, all the information and consciousness in the brain will not be stored and perpetuated.

From the biological point of view, the processing process of human brain is similar to that of a computer, which is a process of different signals (visual, auditory, tactile, taste, smell) input to the brain, processed according to different compilation programs (logical thinking), and the result output, and this processing can be detected with instruments to detect the changes of different electrical signals; similarly, a small DNA stores a huge amount of biological information, and with enough Similarly, a small DNA stores a huge amount of biological information, which can eventually be compiled and expressed as a complete conscious human individual with sufficient energy support. Just like the plot in the movie “The Transcendentalist”, we can’t help but think that if there is strong enough computing power and advanced enough brain-computer interface technology, can human beings transfer their consciousness, thus breaking through the time and space boundaries of carbon-based life, and based on more powerful computing power to travel infinitely in the silicon-based world?

Back to the present, we have to consider, even if such a parallel world can one day become a reality, what are the necessary elements to drive its realization? In our opinion, whether it is the further evolution of the real world or the eventual realization of the parallel world, there are three basic elements necessary:

1. computing power. As time goes on, we will continue to generate sky-high amounts of data, requiring increasingly powerful computing power to process that data and generate more valuable information. Computing power is enabling a full range of traditional alternatives: information processing (manual to computer), information delivery (cart and horse to network), and value delivery (gold fiat to digital assets). Powerful computing power can process larger amounts of data in the same amount of time, while reducing the time and energy consumed to process the same amount of data. The computing power is so powerful that it can instantly simulate the entire planet in full detail, down to a single grain of dust on the windowsill of one of its inhabitants, and can calculate the full range of possible directions of change including where this grain of dust should float down.

The computing power is based on electricity and heat, the chip and its integrated computing power is like a compiled energy usage instructions, using electricity to process the data in a set way and feedback the results, while the electrical energy is all converted into heat and emitted into the air.

2. Electricity. The clean and sustainable nature of electricity, easy storage and transmission, and high energy density make it the most promising secondary energy source. From Internet messaging to electric cars and robotic arms, electricity is both the source of power for the digital world and is gradually becoming the core driver of the real world. The world is concentrating on promoting the full popularity of clean power generation and electric power substitution, and photovoltaic power, wind power and hydropower, as clean and sustainable power generation methods, will gradually become the main way of power generation.

According to the current development trend, electricity will become the most core end-consumption energy, and at the same time, as the basis of arithmetic power, the growing computing power must consume more electricity, so each link related to electricity production and consumption (power generation, transmission, storage and consumption) has a lot of space for further optimization.

3. Heating power. Theorem of thermodynamics is extended, we will find that human beings have been solving the problem of heat since the beginning: human beings draw carbohydrates from food and decompose them into energy in the body to maintain the continuation of life; in ancient times, the heating by fire makes protein easier to digest and absorb, and promotes the improvement of primitive human intelligence; biological survival needs heating and hot water, and the use of heat extends the boundary of biological survival in cold areas. Crops can continue to grow in the heated hut in winter, and humans can even soar in the space of the universe close to absolute zero; thermal power generation is the use of heat generated by fuel to promote the rotation of the turbine, but also faces the serious problem of unit cooling; power transmission to reduce resistance as much as possible, too much resistance will lead to the transfer of power into a large amount of heat, both a waste of electricity and cause the risk of fire; chip computing The large amount of heat generated by the chip needs to be dissipated quickly to ensure that the chip can continue to work stably.

More efficient heat dissipation and lower cost heat supply will continue to be the way of development and progress of human society, and the way to improve energy profit efficiency.

 

Based on such a concept, we at SAI have been conducting technology research and commercial exploration, and have launched our product SAI Energy Calculation Center, which is based on the chip energy technology to reduce the three core costs of computing power, heat and electricity, and SAI Energy Calculation Center can realize the triple network supply of computing power, heat and electricity and form a large energy calculation network, which is distributed in various regions of cities and places around the world. We believe that through our continuous efforts, we can reduce the cost of computing power, electricity and heat for more people and create more value for the society through the SAI Energy Center. We look forward to future technological advances that will enable human beings to make great leaps in computing power, electricity and heat, so that everyone can use cleaner and more affordable computing power, electricity and heat resources, and based on which we can truly have the opportunity to realize a more perfect and superior parallel world.